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Generalised regression theorem and correlation functions of 
fluctuation operators in quantum optics 
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Physics Section, Friedrich-Schiller University, Jena, DDR-6900 Jena, Max-Wien-Platz I ,  
German Democratic Republic 

Received 16 January 1984, in final form 17 September 1984 

Abstract. We consider a dynamic system interacting with a special dissipative system 
composed of many harmonic oscillators. Using the Feynman disentangling theorem and 
a bath approximation we derive differential equations for correlation functions of dynamic 
operators (CFD) concerning the maximum time argument I which in general occurs in 
more than one operator. They must be solved with appropriate initial conditions at time 
t ’ ,  the second in height time argument in the CFD. This procedure allows the successive 
calculation of CFD with an arbitrary time arrangement (e.g. CFD of three operators, where 
the central one carries the smallest time argument). 

The exact equations of motion for dynamic operators may also be written as Langevin 
equations. We define the corresponding fluctuation operators and derive compact 
expressions for their correlation functions (CFF). In general the fluctuation operators show 
no Gaussian behaviour. CFF of second order are &correlated and CFF of third order are 
only 8-correlated with respect to the two highest time arguments. 

1. introduction 

In many quantum optical problems a dynamic system (laser modes, characterised by 
harmonic oscillators, and N-level atoms) is coupled to a dissipative system (see e.g. 
Paul 1969, Haken 1970). Our task is to calculate correlation functions of dynamic 
operators (CFD) as well as correlation functions of fluctuation operators of dynamic 
variables (CFF) using a special model of the dissipative system. 

If the interaction between the dynamic and the dissipative system allows a 
Markovian approximation then CFD with pyramidal time order may be determined 
using the usual regression theorem (Haken et a1 1967, Lax 1968, Agarwal 1974, Mollow 
1975, Swain 1981). Let Q ( r )  be any dynamic operator and Q P ( t )  a complete set of 
dynamic operators. If the expectation value (Q( t ) )  is given by 

( Q ( t ) >  = c f ,  0, t ’ ) (QP(  t” (1.1) 

where ( . . . ) means the quantum statistical average with respect to the whole system, 
then according to the regression theorem each CFD ( M ( t ‘ ,  t ” ) Q ( t ) N (  t’, t”)) with t > t’> 
t” may be written as 

P 

( ~ ( t ’ ,  t ” ) Q ( t ) N ( t ’ ,  t ” ) ) = C f , ( t ,  t ’ ) ( M ( t ’ ,  t”)QP(t’)N(t’, t ” ) )  ( 1.2) 
P 

where M (  t ’ ,  t ” ) ,  N (  t ’ ,  t ” )  are aggregates of dynamic operators possessing the maximum 
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964 L Knoll 

time argument t’ or t”. The regression theorem can be established by showing that the 
CFD (M( t’, t ” ) Q (  t ) N (  t ’ ,  t ” ) )  and the expectation value (Q( t ) )  obey the same differential 
equation with respect to t .  Successive application of the regression theorem makes it 
possible to determine any CFD (A,( t , )  . . . A , ( t , ) )  with a pyramidal arrangement of the 
time arguments t , ,  . . . , t, ( t ,  s . . . s t, 3 t,-l  2 . . . 3 r ,  ; n 2 s b 1). This procedure 
breaks down if a CFD contains m 3 2 not adjacent operators possessing the maximum 
time argument. 

In order to also cover these situations in this paper we extend the usual regression 
theorem (Knoll 1983). We prove that any CFD satisfies a differential equation with 
respect to the maximum time argument. The structure of the differential equation only 
depends on the m operators possessing the maximal time argument. The other ( n  - m) 
operators possessing smaller time arguments only enter in the initial condition at time 
t’, the second in height time argument. Solving these differential equations enables 
one to calculate successively any CFD, as well as those possessing a non-pyramidal 
time arragement. However in general, knowledge of the time behaviour of expectation 
values is not sufficient for determining a CFD with m 3 2  operators carrying the 
maximum time argument. 

As an example of a CFD with an unusual, non-pyramidal time arrangement we 
mention the intensity correlation function of radiation measured by two ideal photo- 
detectors with a frequency filter in front of each (Knoll and Weber 1982). Using 
Fabry-Perot interferometers with filter functions (Eberly and W6dkiewicz 1977) 

F ( t ,  t , ,  tz; W, r) = 2r exp[-(r+io)( t - t , )  - (r-iw)(t  - tl)] (1.3) 

(where r is the bandwidth and o the setting frequency) the measured intensity 
correlation function is given by ( t  3 t’ assumed) 

S(r‘t’w‘; rtw)= 1‘’ dtl, 5 “  dt‘, 5‘  dt, 1‘ dt ,  F ( t ’ ,  t i ,  t ; ;  W ’ , r ’ )  
-m -m -m -m 

x F( t ,  t , ,  t 2 ;  W,  r ) ( ~ ( - j ( r ’ t ~ ) ~ ( - ) ( r t ~ ) ~ ( + j ( r r ~ ) ~ ( + ) ( r ’ t ~ ) )  ( 1.4) 

(r ,  r’ are the positions of the photodetectors, E ( + )  ( E ( - ) )  is the positive (negative) 
frequency part of the electric field operator E = E ( + ) +  E ( - ) ) .  Because of the filter 
action the time arguments t , ,  t2 in ( E ( - ) (  r ‘ t i )E( - ) (  r t , )E(+)(  r t l )E(+) (  r ’ t ; ) )  may be smaller 
than t ’ , ,  t i ,  and a non-pyramidal time arrangement results. 

The second problem considered in this paper concerns correlation functions of 
fluctuation operators (CFF). The Heisenberg equations of motion for dynamic operators 
can be written as operator Langevin equations containing fluctuation operators, the 
correlation functions of which are of interest (Sauermann 1965, Paul 1969, Haken 
1970, Agarwal 1974, Ponath and Schubert 1977). In the case of a harmonic oscillator 
as the dynamic system the fluctuation operators show Gaussian behaviour (Paul 1969, 
Haken 1970), however for an N-level atom as the dynamic system CFF of higher order 
( n  > 2) are not known. The assumption of Gaussian behaviour leads to contradictions 
within the theory. Another assertion was made by Senitzky (1967), but it was not 
checked by a microscopic model. 

Within the scope of our model system we set up operator Langevin equations, 
define the corresponding fluctuation operators and derive compact expressions for 
their correlation functions (CFF). From these we deduce rules for calculation and we 
obtain insight into their time behaviour (number of occurring 6 functions, degree of 
correlation). 
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The dissipative system used in our considerations contains several independent 
baths each being composed of many harmonic oscillators with quasi-continuously 
distributed eigenfrequencies. The baths may be at zero temperature but they can also 
contain excitations caused by finite temperatures or by coherent excitations. We may 
regard the coherent excitation as an external time-dependent force acting on the 
dynamic system. No special assumptions are needed about the dynamic system. 

We use as essential methods and assumptions the Feynman disentangling theorem 
(Feynman 1951, Sauermann 1965, Haken 1970), some special formulae for Bose 
operators and a well-defined bath approximation. The latter is a Born and Markovian 
approximation (Agarwal 1974, Grabert 1982) and all results must be interpreted within 
this scope. In the course of our calculations which represent an extension of the 
investigations by Sauermann (1965) we derive compact expressions for CFD and CFF 
which only contain dynamic operators. These operators are equipped with ordering 
indices, and a direct evaluation of CFD and CFF is very difficult. However it is possible 
to derive differential equations which may be handled more easily. 

In 0 2 we define the model system and in 0 3 we derive compact expressions for 
the time-development operator and for the CFD. Readers not so interested in mathemati- 
cal details may omit 0 3 initially. In 0 4 differential equations for the CFD are derived 
concerning the maximum time argument and the generalised regression theorem is 
formulated. Some simple examples for application are given in appendix 4. Operator 
Langevin equations for dynamic operators and the corresponding fluctuation operators 
are defined in 0 5, and their correlation functions are studied. In 0 6 we summarise 
some conclusions and discuss possible extensions of our model with respect to the 
dissipative system. 

2. The model system 

Our model system is described by the Hamiltonian H: 

(2.3) 

where HD (HB) is the Hamiltonian of the dynamic (dissipative) system, and HJ is the 
interaction Hamiltonian. Units with h = 1 are used throughout. 

The dissipative system is composed of independent baths labelled by the index p, 
and each bath consists of many harmonic oscillators (e.g. photons, phonons) with 
quasi-continuously distributed eigenfrequencies U,,, ( A  denotes the oscillators in one 
bath). The corresponding creation and annihilation operators b;,, b,, obey the Bose 
commutation relations 

where S p p , ,  are Kronecker symbols. HJ is assumed to be linear in b,, and b;,. The 
coupling constants f a p A ,  the dynamic operators apa, spa+ and the range of summation 
for CY depend on the special dynamic system under consideration and need not be 
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specified in our investigation. Defining 

6( t )  = exp(iHot)Q exp(-iHot) (2.5) 

i p A ( t )  = exp(-iw,,t)b,,. (2.6) 

hP”(  t )  = exp(-iwp,t)uPu (2.7) 

where Q is any operator it follows that 

Further we assume 

where up” are characteristic atomic frequencies. H, in (2.1)-(2.3) is the most general 
expression for the interaction linear in b,, and b;A. In the following we assume 
wpa f OJ,,~ for (Y # a’, but we mention that this is not an essential restriction, and it 
may easily be relaxed. The statistical operator p at t = 0 is written as 

where pD(p(BP)) is the statistical operator of the dynamic system (bath ( p ) ) .  In this 
paper each bath ( p )  is characterised by one of the two operators 

p $ )  = exp( -H‘,P’/ kT(P))/TrB(P) exp( -H(BP)/ kT‘,’) (2.9a) 

P(Bp)= l { P p A } ) ( { p p A } l ,  I { P p A } )  = n IPpA),  bpA I P p A )  = P p A  I P p A ) .  (2.9b) 

Equation ( 2 . 9 ~ )  describes a bath at temperature T ( p )  ( k  is the Boltzmann constant), 
and different baths may possess different T(p) .  Equation (2.9b) describes a bath at 
zero temperature but with coherent excitations characterised by the amplitudes PpA of 
the global coherent state I{ppA}).  I t  acts on the dynamic system both as a bath of 
temperature zero and as an external time-dependent force characterised by the PpA. 

One aim of this paper is the investigation of correlation functions of dynamic 
operators (CFD) 

(A,(t,)...Al(fl))B=T~B(PBAn(f,) * . *  A I ( ~ I ) )  (2.10) 

A i ( t i )  = U’( t i )AiU(  t i )  = exp(iHti)Ai exp(-iHt,) (2.1 1) 

and the derivation of differential equations for their determination. The A i ( t i )  are 
dynamic operators (not necessarily different) in the full Heisenberg picture. The index 
i also characterises the position in the CFD. The time arguments ti are arbitrary, and 
some of them may be equal. The trace only has to be taken with the states of the 
dissipative system, and the CFD are still operators in the Hilbert space of the dynamic 
system. Two adjacent operators with equal time arguments ( t i  = t i - l )  may be considered 
as one operator: 

Ai(ti) * A i - l ( t i ) = ( A , .  Ai-I)(t i) .  

As a concrete example for our model system we mention an N-level atom (dynamic 
system) interacting with the quantised radiation field (dissipative system). Coherent 
excitations of the bath may be considered to be caused by an external ideal laser acting 
on the atom and producing non-linear effects (e.g. resonance fluorescence (Mollow 
1975, Kimble and Mandel 1976) and Raman scattering (Agarwal and Jha 1979)). 
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3. Compact expressions for CFD 

3.1. Investigation of the time-development operator U(t)  

We start with the time-development operator U (  t )  = exp( -iHt) which may be written 
as follows 

U (  t )  = exp( -iHot)S( t ) ,  S (  t ) = exp ( - i lof d ~ 1 j l ~  ( 7)) ( 3.1 ) 

The index T in iJT( T ) ,  iy'( T ) ,  a^:"'( T )  . . . has the meaning of an ordering parameter. 
Operators with smaller ordering indices always act before operators with larger ordering 
indices, and operators with ordering indices may be handled as c-numbers by carrying 
out formal manipulations (Feynman 1951). In order not to overburden the formulae 
we shall drop the indices p and (Y and the corresponding summations in § 3. This 
does not lead to any restriction and later we shall reintroduce the indices p and a and 
the summations. We apply the disentangling theorem of Feynman (1951) on (3.1) in 
order to separate the b: from the b, in the exponent. Taking into account the operator 
identity (where x is any c-number) 

exp(xb:)b,, exp(-xb:) = bh,-x8hA,, (3.3) 

after a transformation of integration variables we get 

S (  t )  = exp( -i lo' d7 &( ~ ) a ^ , (  7)) exp (4 lof dT8( ~ ) a ^ : (  7)) 

We now make a bath approximation using the previously mentioned assumption about 
the distribution of the eigenfrequencies U,. If VAC) is a smooth function of A, the 
sum E, f ,  f: exp[i(w - W*)T')] should be not equal to zero only for T ' <  T B ,  where rB is 
a bath relaxation time assumed to be much smaller than any characteristic time of the 
dynamic system. For t >> T B  we approximate a ,̂-+( 7) in the double integral in (3.4) by 
& ( T )  and we replace the integration limit T by 00. Then the double integral in (3.4) 
may be replaced by 

Iof d.r ya^:( T ) & (  T), y = lom d7 ([i( T ) ,  i + ( O ) ] ) B  exp(iw7). (3.5) 

Such bath approximations will also be used in the further calculations. They are of 
Born and Markovian nature, and all the following results should be interpreted within 
this scope. 

A repeated application of the Feynman disentangling theorem finally gives 

= v O ( t )  vJ(t), Vo( t )  = exp[( -iH, - R )  t ]  (3.6) 

V,(t)=exp( -i lof dTii+(T)&(T)) exp( -i lof dTi(T)hT(T)) (3.7) 

where 
R = ya+a and & T )  = V ~ ' ( T ) Q V ~ ( T )  
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for any operator Q. In the expression (3.7) already given by Sauermann (1965) the 
b: and b, are normally ordered and free of ordering indices. 

3.2. Investigation of CFD 

Using U ( t )  from (3.6)-(3.8) we get 

(An(tn) - Ai(t l )h  

=TrB(pBV:(tn) V,'(tn)AnVo(tn)VAtn). V:(~I)V:(~I)A~ V O ( ~ I ) ~ J ( ~ I ) )  
(3.9) 

where in VJ' a reverse ordering prescription must be used. Our aim is to arrive at a 
normal order with respect to b: and b, in the whole expression in (3.9). After some 
transformations (see appendix 1) we get 

(3.10) (An(tn). . . A i ( t t ) ) ~ = g  exp(+O) exp(Xo)An(tn) a . .  A i ( t i )  

(3.1 1 )  

(3.12) 

(3.13) 

(3.14) 

(3.15) 

N,(7) = &:( 7) - ( d i + ( 7 ) ) +  (3.16) 

& T )  = v:(~)Qv~( 7) for any operator Q. (3.17) 

Here the following ordering prescriptions must be used. Concerning the index i all 
operators have to be ordered from right to left in increasing sequence. Operators 
ai,  a: (aiF, a:) are arranged to the right (left) from Ai. Operators ai, a: ( a i f ,  a:) with 
equal i but different 7 are arranged from right to left (left to right) with increasing 7. 

We call attention to the appearence of the time arguments tii = min { t i ,  $} which express 
a bath-mediated correlation between Ai and AI. 

Next we calculate W using equation (2.9) for pB. Since the b:, b, are normally 
ordered the evaluation is very easily performed in the case of (2.9b), and for the case 
of ( 2 . 9 ~ )  we use the following formula for Bose operators b, b+ (where x,y are any 
c-numbers) 

TrJexp (xb+) exp(yb) exp(-wb+b/kT)]/TrB exp(-ob+b/kT) = exp(xy3) 

ri = [exp(w/kT) - I]-'.  

The results may now be summarised as follows 

( A , ( L ) .  . . AI(tl))B=exp(+) exp(x)&(t,). . . A , ( t l >  

x =xo+xr ,  

x =xo+xc ,  * = * O  

* = +o+ +T 

(3.18) 

(3.19) 

( 3 . 2 0 ~ ~ )  

(3.20b) 
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(3.21) 

(3.24a) 

(3.24 b )  

The two cases ( a )  and (b )  in (3.20) and (3.24) correspond to the two cases of the bath 
in (2.9). The argument 7- in (3.22) should be treated as being different from T only 
with respect to the ordering of the operators in the sense T -  C T. After ordering the 
operators, 7- should be set equal to T. 

Equation (3.19) is the compact expression for the CFD we seek. It depends only 
on dynamic operators which are equipped with ordering indices. The special properties 
of the dissipative system enter into the constants y, yT and PA only. 

The ordering prescriptions range over all operators on the RHS of equation (3.19). 
A direct computation is therefore very cumbersome. However, as we shall see, it is 
possible to derive differential equations from (3.19) with respect to the maximum time 
argument which may be handled more easily than the compact expression in equation 
(3.19). 

4. Generalised regression theorem 

We define t = max{tn, . . . , t l }  and we assume that m operators labelled by Aim = 
Om,.  . . , Ai, = Q1( n 3 i ,  > . . . > i l  3 1) possess this maximum time argument t (  t i_ = 
. . . = t i ,  = 1 ) .  The corresponding CFD is now written as 

(An(tn) . . A I ( ~ I ) ) , = ( ( Q , ( ~ ) ; . . .  ; Q I ( ~ ) ) )  (4.1) 

where in ( ( Q m ( t ) ; .  . . ; Q,( t ) ) )  only the operators with the maximum time argument r 
are explicitly mentioned. Differentiating (4.1) with respect to t and using (3.19)-(3.24) 
and (3.12)-(3.17) we obtain (for details see appendix 2) 

(4.2) 
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and 

HI, = HI, + ( U p a ~ P u + ~ P a  - ~ p O ~ p u + )  + c' ( p"" ( ? ) U P P +  + Pp"*( ?)a"") .  (4.5) 
P" P 

The summations over p and a are now reintroduced. [ e ,  . I+ is the anticommutator, 
and the real constants ppu, p:", up, and U,, are defined by T 

( 4 . 6 ~ )  

for p $ )  given by ( 2 . 9 ~ ) ~  and in the case of (2.9b) we have 

For pp"( t )  = 0 the superoperator W in (4.3) acting on dynamic operators has the form 
of a generator of a quantum dynamic semigroup (Lindblad 1976). 

The Hamiltonian part HI, of W contains in addition to HD a level shift term and 
a term describing the coherent excitations in the baths (the sum Zbu goes only over p 
with p$') given by (2.96)). Equation (4.2) together with (4.3)-(4.6) represents the 
essential contents of the generalised regression theorem. It is seen that the structure 
of the differential equation (4.2) for ((Om( t ) ;  . . . ; QI( t ) ) ) =  (A , (  t , )  . . . A, (  t ) ) B  is only 
determined by the operators Om( t )  = Aim( t ) ,  . . . , Ql( t )  = Ai,(  t )  possessing the 
maximum time argument t. The other ( n  - m )  operators possessing smaller time 
arguments are only essential for the initial condition. This behaviour is due to the 
Markovian approximation used in deriving the differential equation (4.2). 

Equation (4.2) must be solved under the initial condition 

( ( Q m ( t ) ; .  . . ; Q l ( t ) ) > r = r , = ( ( Q m ( f ' ) ;  * 1 .  ; Q l ( t ' ) ) ) ,  

where t' is the second in height time argument. The solution of (4.2) depends therefore 
on CFD with the maximum time argument t' and further time arguments occurring in 
the original CFD and being smaller than t and t ' .  

To illustrate the differential equation (4.2) in more detail we consider the special 
cases m = 1 and m = 2: 
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Equation (4.7) also comprises the case n = 1 in which ((Ql(t))) is identical with an 
expectation value: (( Q1( r ) ) )  = ( Q1( f ) ) B .  This means that a CFD (A,( t , )  . . . AI(  t l ) ) B  with 
only one operator possessing the maximum time argument t and the expectation value 
of this operator obey the same differential equation. This is the content of the well 
known usual regression theorem which is also contained in our general result. 

We would like to mention that after taking the expectation value over the dynamic 
system, the differential equation may also be derived for (Ql(t)) by using an equation 
of motion for the density matrix (Haken 1970) and passing over to the expectation 
value of Q1. In that case the dissipative system is not restricted to be composed of 
harmonic oscillators, and the BPa may be general bath operators. 

Equation (4.8) shows that because of the term 9221((Q2(t); Ql(t))) the solution for 
the expectation values is not sufficient to determine the time behaviour of (( Q2( t )  ; Q1( t ) ) )  
(and in general of ( ( Q m ( f ) ; .  . . ; Ql(t))) as can be seen from (4.2)). The differential 
equation (4.8) must be solved separately. Only in special cases ( Q2 = 1 or Q1 = 1 or 
Q2 and Q1 adjacent) does equation (4.8) reduce to (4.7) (with Q1 or Q2 or Q2 Q,  
respectively). On the other hand equation (4.8) (and in general (4.2)) does not contain 
more information about the dissipative system (expressed by ppa, upa, pTa, U T a ,  P p a ( t ) )  
than equation (4.7) for expectation values. 

In concluding this section we state that CFD with any time arrangements can be 
determined by successively solving differential equations of the general type (4.2). In 
appendix 4 some simple examples are given for the dynamic system being a harmonic 
oscillator and a two-level atom. 

5. Correlation functions of fluctuation operators (CFF) 

In the case of a dynamic system interacting with a dissipative system the equations of 
motion for dynamic operators A(t)  can formally be written as operator Langevin 
equations (Sauermann 1965, Paul 1969, Haken 1970, Agarwal 1974). We write 

where FA( t )  are the corresponding fluctuation operators. We are interested in the 
correlation functions of these fluctuation operators ( CFF), the properties of which are 
not yet fully known. In § 5.1 we derive compact expressions for CFF and study their 
time behaviour. More detailed expressions for CFF up to fourth order are given in § 5.2. 

5.1. Compact expressions for CFF 
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After some identical transformations (see appendix 3) we get the compact expression 

K(An,. . . , AI; t,, . . . , 1 , )  

= [ ( a / a t n ) .  * * ( a l a r , )  ~ X P ( J , ) I  e x ~ ( ~ ) x i , ( t , )  * * A,( t l )  (5.3) 
in which differentiations of J/ have still to be carried out. &ti) ,  J, and x are defined 
in 0 3.2, and J, depends only on the time arguments tu = min{t, t j } .  From (5.3) we 
may conclude immediately that each CFF is zero if one of the time arguments t , ,  . . . , t, 
is larger than all the others. However if one time argument is smaller than all the 
others, an expression not equal to zero may result. 

Taking into account 

tij = e( ti - $ ) t j  + e( ij - ri)ti ,  ( a / a t i ) t i j  = (a/ati)tji = e ( $  - ti) (5.4) 

where e(x)  is the step function (e (x)  = l(0) for x >  O(x <O)) and S(x) = do(x)/dx is 
the Dirac S function we obtain 

a - e(rj - ti)%ef; exp(4) a tj 
m f J  

= ~ ( t J - t , ) % ; :  exp(+)+ C e(tm-t , )e(r , - t , )%~J5?:;  ~ X P ( J / )  (5.6) 

(5.7) 

f o r j < i  ( 5 . 8 )  
and eJ(r) and 2 i ( f )  are the expressions as defined in 0 3.2. The action of the 
superoperator 9:; on any CFD ( ~ , ( t , ) .  . . Al(t l ) )B may also be explained as follows: 
(A,(t,) . . . Al( t l ) )B  has to be calculated step by step with the help of the generalised 
regression theorem but with the initial condition 5?Jl(An(rn). . . Al(t l ) )B at time t ,  (cf 
equation (5.12)) where the action of 9,, is explained by equation (4.4). 

Carrying out the differentiations further, the following structure of the CFF may be 
recognised. Each CFF consists of several terms, and each term is proportional to a 
product of k S functions and ( n  - 2k) 8 functions, where 1 S k s [ n/2] and [ n/2] being 
the largest integer less than or equal to n/2. In each term any time argument r ,  appears 
in the product of the S and the 6 functions once at most in the S functions, but it can 
appear in several 8 functions. 

From this structure of the CFF we may deduce that in general the F A ( t )  show no 
Gaussian behaviour (an exception is given by the harmonic oscillator as a dynamic 
system linearly coupled to the dissipative system). Our result does not confirm the 
assertion of Senitzky (1967) according to which for an atom as the dynamic system a 
CFF of order n should contain a term proportional to S ( r ,  - r 2 ) S ( r l  - f 3 ) .  . . S ( t ,  - i n ) .  
Terms with such a strong correlation are absent in our general expression (5.3). 

m 

where 

q; = g, ( t, 1 + 2;c 4 1 + t ,  ) for j >  i 
3 11 = 3 I t  

J I  V 

5.2. CFF up to fourth order 

In the case of second order from (5.3), ( 5 . 5 ) ,  (5.6) we obtain directly 

K(A29 A I ;  f 2 ,  t i )  ( F A ~ ( ~ ~ ) F A , ( ~ I ) ) B =  S(t2- ~ I ) ~ ~ I ( A ~ ( ~ , ) A I ( ~ I ) ) B  (5.9) 
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which may also be written in the form 

K(A2, AI; 12, t l )  

= s(t2- ti)[((3(A2 * A I ) ) ( ~ I ) ) B - ( ( ~ A ~ ) ( ? I )  ' A I ( ~ I ) ) B  

-(A2(fl) (3Al)(fl))Bl* (5.10) 

CFF of second order are always &correlated in the given model. The proportionality 
factor is a bath expectation value of dynamic operators and may be time dependent. 
Equation (5.9) is also valid for baths with coherent excitations representing external 
time-dependent forces acting on the dynamic system. In special cases the evaluation 
of (5.9) gives results in agreement with corresponding formulae e.g. by Sauermann 
(1965) and Ponath and Schubert (1977). 

In third order from the evaluation of (5.3) it follows that 

K(A3, A29 AI; t3, t2, t l )  

(FA,( f3)  FA*( f 2 )  FA, ( t l )>B 

= f3  - f2) e( f2 - t l  )(%:I + 321 )3:2(A3( f2)A2(f2)Al(fl ))B 

+a ( t 2  - t 1 ) 0 ( f 1 - f3)( 3 22 + 3 9 21 (A3( f3  I )A I ( ) )B 

+ 8 ( f I - f3) 8 ( f3 - t 2 )  ( 3 :2 + 3 ?I) 3 $1 (A3 ( t3) f2) A I ( l3  ))B. (5.1 1 )  

This means that the calculation of K(A3, A2, A , ;  t3, f2, f l )  requires the evaluation of 
CFD of second or third order but with only two different time arguments. For example 
a:23:l(A3(t3)A2(t2)Al(f3))B with t 3 >  t2 has to be determined by the solution of the 
differential equation for (%?,((A3( f3)  ; AI(  t3)))) with the initial condition 

(3 $1((A3( t3) ; A I ( t3)))) t 3 =  t2 = 3 3 2 9 3 1 ( A 3 (  f21A2( t 2 )  AI ( t2))B. (5.12) 

CFF of fourth order contain many terms which may be divided into four classes 
according to their time dependence, one term of each class (K,, Kb, K, Kd) is presented: 

Ka = 8 ( f~ - t2) 8 ( t3 - f4) 3 :33 21 (Ad( f3) A3( f3) A2( f2)A I ( t 2 ) ) B  

Kb = 8 ( ti - f 2 )  e( t2 - f ~ )  e ( f3  - t 4 ) 3 2 3 3  $ 2 3  21 (A4( f4)A3( f3) A2( f 2 )  A I ( t2))s 

Kc = 8 ( tl - t2) e ( f 2  - t3 )  8 ( f2  - f4) 9 223 )23 (4 f4)A3( f3)A2( t2) A I ( t2)) B 

Kd = S ( ~ I  -f2)e(f2-f4)e(fi-t3)3$l3223?l(A4(f4)A3(f3)A2(f2)A1(f2))~. 

(5.13) 

In general each CFF of order n contains CFD with 1 different time arguments ( n  -[ n/2] s 
1 s n - 1 ). These CFD must be determined before the corresponding CFF can be calcu- 
lated. 

6. Summary 

In this paper we derived rules for calculating CFD (generalised regression theorem 
which is an extension of the well known usual regression theorem) and CFF of any 
order and with any time arrangement but without making special assumptions about 
the dynamic system. The main equations are given by (4.2) and (5.3) together with 
the corresponding definitions. These results have been derived under the assumption 
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of a special dissipative system. Furthermore a bath approximation has been made 
which may be classified as a Born and Markovian approximation. 

The results suggest arguments for a further generalisation. We expect also that for 
more general dissipative systems but with pB given by ( 2 . 9 ~ )  in a Born and Markovian 
approximation the differential equation (4.2) in connection with the relations (2.1 ), 
(2.2), and (4.3)-(4.6~) should be used for CFD, where the B"" are now more general 
bath operators. Then the generalised regression theorem may be applied also in the 
case of an arbitrary dissipative system. This suggestion is supported by the following 
fact. It is possible to derive the differential equation (4.2) in another way, applicable 
for general dissipative systems (Schubert 1983). One method consists in expanding 
the CFD in powers of H, and making approximations similar to those used in deriving 
density-matrix equations (Haken 1970). However now additional factorisation assump- 
tions are necessary concerning bath and dynamic variables. 

Since completing our calculations we have seen a paper by von Waldenfels (1982) 
in which the problem of light emission and absorption of a two-level atom is treated 
in the frame of quantum stochastic processes. This approach enables him to calculate 
correlation functions of atomic operators with any time arrangement. It seems to us 
that his results correspond to our formulae if we apply them to the model of a two-level 
atom interacting with the quantised radiation field as a dissipative system. 
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Appendix 1 

In order to arrive at a normal order with respect to b: and b, in (3.9) we have to 
transfer all exponential functions with arguments B ( B + )  to the right (left). In this 
procedure the dynamic operators d T ( ~ ) ,  . . . may be handled as c-numbers if we equip 
them with an additional ordering index i indicating the origin from V,(t i )  or V:( t i ) .  
Using the operator identity 

if [P ,  93 is a c-number we obtain 

exp( -i Jot' dTi h ( T j ) 6 L t ( T i )  exp -i d q  l?(q)cijTJ(7,) 1 ) ( Jot' 

(A1.2) 

Using the bath approximation explained earlier the double integral D = 1; dTi 1; d7,. . . 
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in (A1.2) may be approximated by 

D =  lo"' dT(Y+Y*)d:(T)dj,(T), tu = min{ ti, t j }  (A1.3) 

because of the small bath relaxation times 78. Continuing in this way we arrive at 
equation (3.10). 

Appendix 2 

In order to derive equation (4.2) by differentiating (4.1) with respect to t we first 
consider the case m = 1. We now label the largest time argument t ,  by t and set A, = Q. 
Differentiating (3.19) with respect to t gives 

(d/ d t)(( 0 ( t ) )) 
= (d/dt)(A,(t,) . . . A,(t)  . . . A , ( ~ I ) ) B  

=exp(+)[(d/dt)  exp(x)lA,(t,). . . A,(?). . . A I ( ~ I )  

+exp(+) exp(x)A,(t,). . . [ (d /d t )&t) l . .  . A I ( ~ I ) .  (A2.1) 

From (3.6), (3.17) we have 

( d l d t ) A ( t )  = V,'(t){i[Ho, A , I - ( W  +AtR)IVo(t) (A2.2) 

and from the first term in equation (A2.1) we get 

exp(+) exp(x)(Ai,(tf l)  . . . [(Y+ ~ * ) ( c i , i ( t ) ) + d , , ( t ) ~ i , ( t ) ~ .  . . A l ( t l ) ) +  . . . (A2.3) 

where the term explicitly written down results from xo and the further contributions 
are due to xT or xC. Since t is the maximum time argument, from the ordering 
prescription and equation (3.17) we obtain 

(;ti( t )  )+dtt ( t)Az ( t )  = ( d  ( t )  )+At ( t )  d ( t )  - 
= V,'( t)a'A,aV0( t )  = (a+A,a)( t ) .  (A2.4) 

Combining all partial results we arrive at 

(d/dt)((Q(t)))=(A,(t,). . (3At) ( t )  . . . Ai(ti))B=(((gQ)(t))) (A2.5) 

where (9Q) is defined in (4.3). In doing so we have reintroduced the summation over 
p and (Y and carried out some elementary transformations. 

For m a 2 the expression exp( +) in (3.19) also depends on the maximum time 
argument t .  Differentiating (4.1) with respect to t we get additional terms resulting 
from exp( +) which give rise to the double sum in (4.2). Thus for both m = 1 and m 3 2 
we arrive at equation (4.2) by straightforward differentiation of equation (4.1). 

Appendix 3 

Using the following abbreviations 
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Ail'( t i )  = (%Ai)( t i ) ,  A:*'( t i )  = Ai( t i )  (A3.2) 

together with (3.19) we arrive at 

K ( A n , .  , Ai; t", . . . , t i )  

= i . . . i c p f n '  . . . cp~"''(A'R.'( t , )  . . . A$"l'( t l ) )e  
un=l " ) = I  

hi 

= i . . . i c p f n ' .  . . cp\"l'exp(+) exp(X)AT)(t ,) .  . . A{"l)(t,). (A3.3) 
" . = I  ol=l 

For any sum in (A3.3) we get 

2 Y i Y 

cp!"~' exp( +) exp(X)ALu.'( t , )  . . . A!,"#'( t i )  . . . A$"! )( t l )  
" , = I  

Y 

= -exp( +) exp(X)A',"n'( t,) . . . (zi)( t i )  . . . A y (  t l )  
rv 

+ (d/dti)  exp(+) exp(x)Ay'(  t,) . . . ai( t i )  . . . A\"I'( t l )  

= [ (a /dt i )  exp(+)] exp(x)Af"'( i n )  . . . Aii(ti) . . . A\"I'( t , )  
2/ - 

(A3.4) 

and by continuing in this way we arrive at equation (5.3).  

Appendix 4 

In order to illustrate the generalised regression theorem we consider two simple 
examples. Firstly we investigate a harmonic oscillator (dynamic system) interacting 
with one bath described by ( 2 . 9 ~ ) .  We take 

HD = w0afa ,  H, = Ba++ B+a (A4.1) 

where a and a+ fulfil the commutation relations (2.4) for Bose operators. From 
(4.3)-(4.5) we obtain 

where is the renormalised oscillator frequency, and 1 is the unit operator. Inserting 
these results into (4.7) and (4.8) and solving the resulting differential equations we get 

( (a ( t ) ) )=  exp[(-in-A)(t- t')l((a(t'))) (A4.5) 

( (a+( t ) ;  a'(t)))=exp[(+2in-2A)(t- r ' ) ] ( (a+(t ' ) ;  ~ ' ( t ' ) ) )  (A4.6) 

((a'( t ) ; a ( 2 ) ) )  = exp[ -2A ( t - t')](( a+( 2 ' )  ; a ( t '))) + n '{ 1 - exp[ -2A ( t - i f ) ] } ( (  1 ; 1)) (A4.7) 

where t' is the second in height time argument in the CFD under consideration, 
A = p - p and n T  = p T / A .  In the special case ((a+( t )  : a(  2 ) ) )  = ( a + (  t )a+(  t ' )a(  t ' )a (  f ) ) B  
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from (A4.7) we obtain 

(a+(  t ) a + ( t ’ ) a (  t ’ )a (  f ) ) B  

= exp[-2A ( ?  - f‘)](a+( ?’)a’( ?’)a( ? ‘ )a (  t ’ ) ) ~  

+ n *{ 1 - exp[-2A ( t  - f ’ ) ] } (a+(  t ‘ )a (  f ’ ) ) B .  (A4.8) 

More generally the final result for (a+(t4)a+(t3)a(t2)a(t ,))B where the ti have no fixed 
relation with each other may be written as follows ( tmin = min{t4, . . . , t , ) ,  ( . . . ) = 
T ~ D P D ( .  . - )B):  

(a’(t4)a+( t 3 ) a (  t 2 ) a (  I )) 

=exp[iR(r4+r3-t2-tl)]  

x (a(tmin){exp[-A(I f 4 -  t21 + It3 - t l l ) l  + exp[-A(I f4 - til + 113 - t21)l)n * 
+P(tmin) exp[-A(t,+t,+ f 2 +  tl-4tmin)l) (A4.9) 

where (a( t )  = ( a + ( t ) a ( t ) ) ,  P ( t )  = (a’(t)a+(t)a(t)a(t))-2nTa(f)) 

a(?) = n * + exp( -2At)((a+a) - n *) (A4.10) 

p (  t )  = exp(-4At)((a+a+aa) -4nr(a+a)+2nT2) 

+2 exp(-2At)n7((a+a)- n*) (A4.11) 

and (a+a+aa) ,  (a ’a)  are the expectation values with respect to the total system at time 
zero. 

As a second and more involved example we consider a two-level atom interacting 
with one bath described by ( 2 . 9 ~ ) .  We take 

(A4.12) 

where au = li)(jl ( i , j  = 1,2; ai,ajn = Smjain) and I1)(12)) is the ground (excited) state of 
the two-level atom with the transition frequency wo, and we have a,  I + aZ2 = 1. From 
(4.3)-(4.5) we obtain, for example 

B a 1 2 = [ - i ~ - ( p  +pr)]a12;  Buzz = -2(p + p T)a22+2pT1 (A4.13 ) 

921((a21(t); a,,(t)))= 2pT((n(t);  n ( t ) ) )  (A4.14) 

In order to determine for instance the CFD (a2l(t)a22(t’)a,2(t))B we first have to 

(A4.15) 

(A4.16) 

H, = wo(a22 - a,  l)/2, H, = Ba21 + B+UI2 

where n ( t )  = az2(f )  - a l l ( t ) ;  and R is the renormalised transition frequency. 

solve the following system of differential equations resulting from (4.8): 

(d/ d t)(( a2 1 ( t ; a I2( t ) ) )  = - 2 b  + p )((a2 I ( t )  ; a I *( t ))) + 2 P  *(( n ( t )  ; n ( t 1)) 
(d/  d t )((a I2(  t )  ; a2 1 ( t 1)) = -2( P + CL * )((a I2( t )  ; a2 I ( t ) ) )  + 2 p  (( n ( t )  ; n ( t ))) 

( d/ d t I(( n ( t )  ; n ( t ) ) )  = - 4 b  + CL ’ )(( n ( t ) ; n ( t ))) + 8p(( 4 2  1 ( t 1 ; a I 2(  t ) ) )  

+ 8P *(( a I2( t 1 : a2 I ( t ))) + S(  t ) (A4.17) 

with the initial conditions 

((a21 ( t ’ )  ; a12( ?’I)) E (a21(  t’)a2Z( t’)a12( t’)>B = 0 (A4.18) 

((a12(tf); a2l(t’))) = ( a 1 2 ( t ’ ) a 2 2 ( t ’ ) a 2 1 ( f ’ ) > B = ( a l l ( ~ ’ ) ) B  (A4.19) 

((n( t ’ )  ; n( t ’ ) ) )  (A4.20) (n( t ‘ ) a22(  t ’ ) n (  ?’))B = (a,?2( f ’ ) )B  
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